

SQL Reference

EnterpriseDB GridSQL

Version 0.9

March 2008

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 2

Table of Contents
Table of Contents ...2
1 Introduction...4

1.1 Overview ...4
2 Data Types ..5
3 Expressions ...6

3.1 Expressions ..6
3.2 Operators...6
3.2.1 Logical Operators ...6
3.2.2 Mathematical Operators ..8
3.2.3 Bit Operators ...8
3.2.4 Date/Time Operators ..8

4 Functions...9
4.1 Aggregate Functions..9
4.2 Statistical aggregate functions ..10
4.3 Mathematical Functions..12
4.4 Date & Time Functions...15
4.5 String and Character Functions ...17
4.6 Other Functions ..21

5 SQL Commands..22
5.1 Data Definition Statements ..22
5.1.1 CREATE TABLESPACE..22
5.1.2 CREATE TABLE ...23
5.1.3 DROP TABLE ..28
5.1.4 TRUNCATE TABLE ...28
5.1.5 ALTER TABLE … ADD COLUMN..28
5.1.6 ALTER TABLE … DROP COLUMN..28
5.1.7 ALTER TABLE … ADD PRIMARY KEY...29
5.1.8 ALTER TABLE … ADD FOREIGN KEY...29
5.1.9 ALTER TABLE … DROP CONSTRAINT ...30
5.1.10 ALTER TABLE … DROP PRIMARY KEY ...30
5.1.11 ALTER TABLE … ALTER COLUMN ...31
5.1.12 ALTER TABLE … OWNER ..31
5.1.13 ALTER TABLE … SET TABLESPACE...31
5.1.14 RENAME TABLE ..31
5.1.15 CREATE INDEX...32
5.1.16 DROP INDEX..32
5.1.17 CLUSTER ...32
5.1.18 CREATE VIEW ..33
5.1.19 DROP VIEW ...33

5.2 Data Manipulation Statements ..34
5.2.1 INSERT ...34
5.2.2 UPDATE...34
5.2.3 DELETE ...35
5.2.4 SELECT ...36

5.3 Users and Privileges ..38

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 3

5.3.1 CREATE USER ..38
5.3.2 ALTER USER ..39
5.3.3 DROP USER ...39
5.3.4 GRANT ..39
5.3.5 REVOKE ..40

5.4 Other Commands ..41
5.4.1 SHOW DATABASES ...41
5.4.2 SHOW TABLES ...42
5.4.3 SHOW VIEWS ..42
5.4.4 SHOW TABLE <table>...42
5.4.5 SHOW VIEW <view>...42
5.4.6 SHOW INDEXES ON <table>..43
5.4.7 SHOW CONSTRAINTS ON <table>..43
5.4.8 SHOW USERS ..43
5.4.9 SHOW STATEMENTS ...44
5.4.10 KILL..44
5.4.11 ANALYZE ...44
5.4.12 VACUUM..45
5.4.13 EXECUTE DIRECT ...45

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 4

1 Introduction

1.1 Overview

EnterpriseDB GridSQL’s supported SQL is very similar to that of Postgres Plus

Advanced Server and PostgreSQL. To be clear, using GridSQL in conjunction with the

underlying database does not mean that you will have access to the full functionality

of that particular database. Nonetheless, GridSQL allows for a lot of customization in

the gridsql.config file to allow the DBA to define additional functions as well as map

GridSQL commands to the underlying database.

This is not intended to be a comprehensive analysis of the SQL language,

but is intended to provide information regarding the supported SQL and its

syntax, and to point out noteworthy GridSQL implementation details to bear

in mind.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 5

2 Data Types

The following data types are supported:

Data Type Comments

BIGINT, INT8

BIT, VARBIT

BLOB, BINARY, BYTE, IMAGE, RAW,

LONG RAW, VARBINARY

Maps to BYTEA

BOOLEAN (May not be supported by all underlying

databases)

CHAR[ACTER] (length) Width is fixed to length.

DATE Accepts format YYYY-MM-DD or YYYYMMDD

DATETIME Combination of date and time

DOUBLE PRECISION, FLOAT8 8 byte floating point number

DEC[IMAL] (length, decimals) Mapped to NUMERIC

FLOAT[(length, decimals)],

SMALLFLOAT, FLOAT4

INT[EGER], INT4

INTERVAL

 [YEAR|MONTH|DAY|HOUR|MINUTE

 TO

 YEAR|MONTH|DAY|HOUR|MINUTE]

For time intervals

NCHAR[ACTER] (length) For multi-language support, like CHAR

NUMERIC[(length[,decimals])],

MONEY, SMALLMONEY, YEAR

NVARCHAR[ACTER] (length) For multi-language support, like VARCHAR

REAL[(length, decimals)]

SERIAL, BIGSERIAL 4 and 8 byte serial

SMALLINT, INT2, TINYINT
TEXT, CLOB, LONG, LONG VARCHAR,

LONGTEXT, LVARCHAR, MEDIUMTEXT

Acts as a CLOB

TIME Accepts hh:mm:ss or hhmmss format

TIMESTAMP[(length)],

SMALLDATETIME

Combination of date and time, with optional

fractional second precision

VARCHAR[2] (length)

or CHAR[ACTER] VARYING (length),

TINYTEXT

Varying number of characters, with a maximum

of specified length

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 6

3 Expressions

3.1 Expressions

Logical expressions are typically found as part of the WHERE clause of various

statements in determining the rows that will be effected by the statement. The

operands of a logical expression to be evaluated by a logical operator may in turn be

a logical expression, or an SQL expression of any of the supported data types.

Operators are discussed in the following section. In addition, available functions are

covered in a later chapter.

3.2 Operators

The logical and mathematical operators that are used in expressions that GridSQL

recognizes appear below, in ascending order of precedence by line.

Parentheses can also be used in expression to determine precedence.

3.2.1 Logical Operators

OR

AND

NOT

BETWEEN

CASE, WHEN, THEN, ELSE

=, !=, <>, >=, >, <=, <,

IS, LIKE, ILIKE, SIMILAR TO, IN, ~

BETWEEN

~ matches

~* matches, case insensitive

!~ not matches

!~* not matches, case insensitive

The between operator allows for the comparison of a range of values.

Example:

SELECT *

FROM customer

WHERE est_income BETWEEN 100000 and 200000

CASE

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 7

CASE expression

 WHEN compare_expression THEN result_value

 [WHEN compare_expression THEN result_value ...]

 [ELSE result_value]

END

CASE

 WHEN condition THEN result_value

 [WHEN condition THEN result_value ...]

 [ELSE result_value]

END

There are two forms of CASE. The first form allows for comparing a single expression

against a list of possible values, while the second form allows for various conditions

to be evaluated.

In either case, an ELSE clause may appear to specify a default value.

Example:
SELECT CASE custtype

 WHEN ‘P’ THEN ‘Platinum’

 WHEN ‘G’ THEN ‘Gold’

 WHEN ‘S’ THEN ‘Silver’

 ELSE ‘Standard’

 END

FROM customer

WHERE state = ‘CA’

SELECT CASE

 WHEN custtype = ‘P’ THEN ‘Red Carpet’

 WHEN ordercount <= 1 THEN ‘New’

 ELSE ‘Standard’

 END

IS

Example:

 SELECT *

 FROM customer

 WHERE lastname IS NULL

LIKE

LIKE is used to match part of a string. Wildcard characters are used as part of a

string pattern.

Example: Select all customers whose names begin with the letter B.

 SELECT *

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 8

 FROM customer

 WHERE lastname LIKE ‘B%’

IN

IN is used to compare an expression to a set of expressions

Example: Select all customers in New England states

SELECT *

FROM customer

WHERE state IN (‘NH’, ‘VT’, ‘CT’, ‘MA’, ‘ME’)

3.2.2 Mathematical Operators

|/ square root

||/ cube root

! factorial

!! factorial (prefix operator)

@ absolute value

-, +
*, /, DIV, MOD

^

- (numeric negation)

Standard mathematical operators ‘-‘, ‘+’, ‘*’, and ‘/’ are available. In addition the

following are available: ‘^’ (raise to a power), DIV (divisor—no remainder), and

MOD (Modulo- remainder).

3.2.3 Bit Operators

& bitwise AND

| bitwise OR

bitwise XOR

<< bitwise shift left

>> bitwise shift right

3.2.4 Date/Time Operators

The following describes the operators and their usage that are applicable to

Date/Time expressions.

Operator Example Result

+ date '2001-09-28' + integer '7' date '2001-10-05'

+ date '2001-09-28' + time '03:00' timestamp '2001-09-28 03:00'

- date '2001-10-01' - date '2001-09-28' integer '3'

- date '2001-10-01' - integer '7' date '2001-09-24'

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 9

4 Functions

The following functions are supported as part of SQL Expressions. You may also map

functions from one to another or create templates that are substituted at runtime,

which is useful for user-defined functions. Please see the Administrator’s Guide for

more details on how to set that up in the gridsql.config file.

4.1 Aggregate Functions

Aggregate functions differ from regular functions in that regular functions are applied

on a row by row basis, where as aggregate functions apply to a group of rows, either

the entire set of rows being returned based on the specified conditions, or a subset

of that, as determined by the GROUP BY clause.

AVG(n)

Calculates the average or mean of a numeric expression.

BIT_AND(expression)

Returns the bitwise AND of all non-null input values, or null if none.

BIT_OR(expression)

Returns the bitwise OR of all non-null input values, or null if none.

BOOL_AND(expression)

Returns true if all input values are true, otherwise false.

BOOL_OR(expression)

Returns true if at least one input value is true, otherwise false.

COUNT(*)

COUNT([DISTINCT] expr)

COUNT(*) counts the number of rows that make up a group of rows.

COUNT(DISTNCT expr) counts the number of unique appearances of the expression

in the projected results.

EVERY(expression)

Returns equivalent to BOOL_AND.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 10

MAX(expr)

Calculates the maximum value for a group of rows, whether the expression is of a

numeric or string type.

MIN(expr)

Calculates the minimum value for a group of rows, whether the expression is of a

numeric or string type.

SUM(n)

Calculates the SUM of an expression for a group of rows.

4.2 Statistical aggregate functions

CORR(Y, X)

Calculates the correlation-coefficient of the two numbers.

COVAR_POP(Y, X)

Calculates the population covariance of the two numbers.

COVAR_SAMP(Y, X)

Calculates the sample covariance of the two numbers.

REGR_AVGX(Y, X)

Calculates the average of the independent variable(X) of the regression line.

REGR_AVGY(Y, X)

Calculates the average of the dependent variable(Y) of the regression line.

REGR_COUNT(Y, X)

Calculates the number of non-null number pairs to fit the regression line.

REGR_INTERCEPT(Y, X)

Calculates the y-intercept of the least-squares-fit linear equation determined by the

(X, Y) pairs.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 11

REGR_R2(Y, X)

Calculates the square of the correlation coefficient.

REGR_SLOPE(Y, X)

Calculates the slope of the least-squares-fit linear equation determined by the (X, Y)

pairs.

REGR_SXX(Y, X)

Calculates the sum of squares of the independent variable.

REGR_SXY(Y, X)

Calculates the sum of products of independent times dependent variable.

REGR_SYY(Y, X)

Calculates the sum of squares of the dependent variable.

STDDEV(n)

Calculates the standard deviation of a group of rows.

STDDEV_POP(expression)

Calculates the population standard deviation of the input values.

STDDEV_SAMP(expression)

Calculates the sample standard deviation of the input values.

VARIANCE(n)

Calculates the statistical variance of a group of rows.

VAR_POP(expression)

Calculates the population variance of the input values.

VAR_SAMP(expression)

Calculates the sample variance of the input values.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 12

4.3 Mathematical Functions

ABS(n)

Calculates the absolute value of the numeric expression.

CBRT(DOUBLE PRECISION)

Returns cube root of the given number.

CEIL[ING](n)

Calculates the ceiling of the numeric expression, that is, the next highest integer.

CEIL(1.2) is equal to 2, and CEIL(-1.2) is equal to –1.

EXP(DOUBLE PRECISION or NUMERIC)

Returns exponential of the given number.

FLOOR(DOUBLE PRECISION or NUMERIC)

Returns largest integer not greater than argument.

LN(n)

Calculates the natural logarithm of numeric expression n.

LOG(n1)

LOG(n1, n2)

In the first form with one parameter, it is equivalent of LN(), the natural logarithm

function.

In the second form, it calculates the logarithm of n1 for base n2.

MOD(n1, n2)

Modulo. Calculates the remainder of n1 divided by n2.

This is equivalent to n1 mod n2 or n1 % n2.

PI()

Returns the value of Pi.

POWER(n1, n2)

Calculates n1 to the power of n2.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 13

RANDOM()

Returns random value between 0.0 and 1.0.

ROUND(n)

Calculates n rounded to the nearest integer.

SETSEED(DOUBLE PRECISION)

Sets seed for subsequent random() calls (value between 0 and 1.0).

SIGN(n)

Calculates the sign of numeric expression n. The return value is –1 if n is negative,

0, if n is 0, or 1 is n is positive.

SQRT(n)

Calculates the square root of n.

TRUNC(n1)

TRUNC(n1,n2)

In the first form, with a single parameter, the decimal places are truncated.

In the second form, with n1 > 0, the number n1 is truncated to n2 decimal places. If

n2 < 0 then n2 places in front of the decimal point are set to 0.

WIDTH_BUCKET(op NUMERIC, b1 NUMERIC, b2 NUMERIC, count INTEGER)

Returns the bucket to which operand would be assigned in an equidepth histogram

with count buckets, in the range b1 to b2.

Trigonometric Functions

ACOS(n)

Returns the arc cosine of n.

ASIN(n)

Returns the arc sin of n.

ATAN(n)

Returns the arc tangent of n.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 14

COS(n)

Returns the cosine of n.

COT(n)

Returns the cotangent of n.

DEGREES(n)

Returns the radians value of n converted to degrees.

RADIANS(n)

Returns the degrees value of n converted to radians.

SIN(n)

Returns the sine of n.

TAN(n)

Returns the tangent of n

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 15

4.4 Date & Time Functions

AGE (timestamp [, timestamp)

Returns the age or age difference of the timestamp.

CLOCK_TIMESTAMP()

Returns current date and time.

CURRENT_DATE

Returns the current date.

CURRENT_TIME

Returns the current time.

CURRENT_TIMESTAMP

Returns the current date and time as a timestamp (datetime) type.

DATE_PART(s, timestamp)

Returns the part element specified in the first argument from the timestamp.

Example:

 select DATE_PART(‘month’, ‘2001-12-31’) from table1

 Returns

 12

DATE_TRUNC(s, timestamp)

Returns the timestamp truncated to the specified precision.

EXTRACT (field from [timestamp|interval])

Extracts the specified field from the timestamp

 select EXTRACT (day from timestamp ’1999-12-31’)

 Returns

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 16

 31

ISFINITE (timestamp/interval)

Tests for finite timestamp

JUSTIFY_DAYS(interval)

Adjusts interval so 30-day time periods are represented as months.

JUSTIFY_HOURS(interval)

Adjusts interval so 24-hour time periods are represented as days.

JUSTIFY_INTERVAL(interval)

Adjusts interval using justify_days and justify_hours, with additional sign

adjustments.

LAST_DAY(timestamp)

Returns the last day of the month represented by the given date.

LOCALTIME [(int)]

Returns time of day

LOCALTIMESTAMP [(int)]

Returns current timestamp

MONTHS_BETWEEN(TIMESTAMP1,TIMESTAMP2)

Returns the number of months between two dates.

NEXT_DAY(TIMESTAMP,TEXT)

Returns the first occurrence of the given weekday strictly greater than the given

date.

NOW()

Returns current timestamp with time zone.

STATEMENT_TIMESTAMP()

Returns current date and time (at the start of current statement).

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 17

SYSDATE

Returns current date and time.

TIMEOFDAY()

Returns the current date and time as a timestamp.

4.5 String and Character Functions

ASCII(s)

Returns the ASCII value of string s.

BIT_LENGTH(s)

Returns the number of bits in the string.

BTRIM(string TEXT [,characters TEXT])

Removes the longest string consisting only of characters in characters (a space by

default) from the start and end of string.

CHAR_LENGTH(s)

CHARACTER_LENGTH(s)

Returns the number of characters in the string.

CHR(INTEGER)

Returns the character with the given ASCII code.

CONCAT(str1, str2)

Perfoms string concatenation.

CONVERT(str using conversion_name)

Change encoding using specified conversion name.

DECODE(expr, expr1a,expr1b [,expr2a,expr2b]...[,default])

Finds first match of expr with expr1a, expr2a, etc. When match found, returns

corresponding parameter pair, expr1b, expr2b, etc. If no match found, returns

default. If no match found and default not specified, returns null.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 18

DECODE(string TEXT,type TEXT)

Decode binary data from string previously encoded with encode. Parameter type is

same as in encode.

ENCODE(data BYTEA,type TEXT)

Encode binary data to ASCII-only representation. Supported types are: base64, hex,

escape.

INITCAP(s)

Returns the string passed in transformed such that the first letter in upper case, and

the other letters are in lower case.

INSTR(string, set, [start, [occurrence]])

Finds the location of a set of characters in a string, starting at position start in the

string string, and looking for the first, second, third and so on occurrences of the set.

LENGTH(s)

Returns the number of characters in string s.

LOWER(s)

Returns string s with all characters converted to lower case.

LPAD(s1, n[, s2])

Returns string based on string s1 set to length n, with any extra padding needed

taken from s2. The s2 is optional and by default a space is used.

LTRIM(s1 [, s2])

Remove the longest string containing only characters from s2 (a space by default)

from the start of string s1.

MD5(string)

Calculates the MD5 hash of string, returning the result in hexadecimal.

NVL(expr1, expr2)

If expr1 is not null, then nvl returns expr2.

NVL2(expr1,expr2,expr3)

Returns expr3 if expr1 is null, otherwise returns expr2.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 19

OCTET_LENGTH(s)

Returns the number of bytes in the string

OVERLAY(s1 PLACING s2 FROM int [FOR int])

Replaces characters in string s1 with those from s2 starting at the position specified.

PG_CLIENT_ENCODING()

Current client encoding name.

POSITION(s1 IN s2)

Returns the character position in which string s1 is found in string s2.

QUOTE_IDENT(s)

Returns the given string in double quoted form. Quotes are added only if necessary

(i.e., if the string contains non-identifier characters or would be case-folded).

QUOTE_LITERAL(s)

Returns the given string suitably quoted to be used as a string literal in an SQL

statement string. Embedded quotes and backslashes are properly doubled.

REPEAT(string TEXT,number INTEGER)

Repeats string the specified number of times.

REPLACE(string TEXT,search_string TEXT,[replace_string]TEXT)

Replaces one value in a string with another. If replace_string is not specified, the

search_string value when found, is removed.

RPAD(s1,n,s2)

Returns string based on string s set to length n, with any extra padding needed

taken from s2.

RTRIM(s1)

Returns string s1 with trailing spaces removed.

SPLIT_PART(string TEXT, delimiter TEXT, field INTEGER)

Splits string on delimiter and return the given field (counting from one).

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 20

STRPOS(string,substring)

Location of specified substring in the string.

SUBSTR(s1, n1, n2)

SUBSTRING(s1 FROM n1 [FOR n2])

Returns the substring of string s1, starting at position n1, continuing for n2

characters.

TO_ASCII(string text[, encoding text])

Converts string to ASCII from another encoding (only supports conversion from

LATIN1, LATIN2, LATIN9, and WIN1250 encodings).

TO_HEX(number)

Converts number to its equivalent hexadecimal representation.

TRANSLATE(string TEXT, from TEXT, to TEXT)

Any character in string that matches a character in the from set is replaced by the

corresponding character in the to set.

TRIM(leading | trailing | both c from s1)

Remove the longest string containing only the characters c (a space by default) from

the start, end, or both ends of the string s1.

UPPER(s)

Returns the string s converted into all upper case letters.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 21

4.6 Other Functions

CURRENT_USER()

Returns the current user.

CAST(expr1 as datatype)

Casts expression to datatype.

DATABASE()

Returns the current database being used.

VERSION()

Returns the version of the database server being used.

USER()

Returns the current user.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 22

5 SQL Commands

5.1 Data Definition Statements

5.1.1 CREATE TABLESPACE

Syntax:

CREATE TABLESPACE tablespace

 LOCATION 'path' ON NODE[S] nodenum [,nodenum...]

 [,LOCATION 'path' ON NODE[S] nodenum [,nodenum...]]

EnterpriseDB supports the creation of tablespaces. This gives database

administrators more flexibility in specifying locations of tables on physical disks. For

example, a DBA may want to put a particularly large and often-used fact table on its

own set of RAID hard drives, while keeping other tables in another location. Or, the

DBA may want to put indexes on a table in a different location than the table itself.

Tablespaces are not required. If not used, all tables will be created in the default

tablespace on the underlying database on each node.

GridSQL allows you to conveniently assign a logical tablespace name that groups

together and corresponds to tablespaces on the individual EnterpriseDB instances on

the individual nodes. Ideally, nodes should be equal in processing capability and

configuration, so you could specify the same file system path location for all nodes.

There is also the capability to specify different locations on different nodes, if

desired.

Once a tablespace has been defined, it can be referenced when creating tables or

indexes.

A table can be moved to a separate tablespace by using the ALTER TABLE SET

TABLESPACE command.

Note: the paths specified for the tablespaces must be empty directories that

have already been created, and the EnterpriseDB postmaster process must

have permission to write to this directory.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 23

5.1.2 CREATE TABLE

Syntax:

CREATE [TEMP] TABLE table_name (create_definition, ...)

[partitioning_options]

[INHERITS (table_name)]

[WITH XROWID | WITHOUT XROWID]

[TABLESPACE tablespace]

create_definition:

 column_name data_type [NOT NULL | NULL] [DEFAULT default_value]

 [PRIMARY KEY]

 or

 constraint_definition

constraint_definition: [CONSTRAINT constraint_name]

 PRIMARY KEY (index_column_name,...)

 or FOREIGN KEY [CONSTRAINT symbol] (index_column_name,...)

 [reference_definition]

 or CHECK (expression)

data_type: (one of the data types that appear in the Data Type section

:

reference_definition:

 REFERENCES table_name [(index_column_name,...)]

partitioning_options:

 [PARTITIONING KEY column_name] ON ALL

 | [PARTITIONING KEY column_name] ON [NODE[S]] node_num[,node_num …]

 | REPLICATED

 | ROUND ROBIN ON (ALL | NODES node_num[,node_num …])

The CREATE TABLE statement is used to create tables in databases. It can be

executed only by a user of type DBA or RESOURCE.

Table names may not start with the temporary table character sequence defined in

xdb.tempTablePrefix in the gridsql.config file.

Tablespaces

The optional TABLESPACE clause allows a tablespace to be specified, to determine

the location of the table data. See the CREATE TABLESPACE command for more

details.

Internode Partitioning

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 24

The partitioning_options allow the DBA to specify a partitioning strategy, which is

very important to the performance of the system. Additional information appears

in the GridSQL Planning Guide, and should be read carefully.

Partitioning allows the DBA to distribute the data amongst multiple nodes, either

based on round robin partitioning, or a partitioning column. The value in this column

is used to calculate a hash value, which is mapped to a destination node. (GridSQL

does not support range partitioning or round-robin, just hash partitioning.)

This distribution of data allows EnterpriseDB GridSQL to parallelize queries. In

choosing a partitioning key, it is important to take into consideration what other

tables this table will likely join with. That way, if these other tables are partitioned on

the corresponding join column, the GridSQL Optimizer will recognize that local joins

can occur without having to resort to any row shipping.

It is recommended to use all available nodes when choosing which nodes to use for

the partitioned table.

Normally, one would probably want to select a column to designate as the

partitioning column. Designating a partitioning column allows local joins to occur for

other tables that are similarly partitioned, in cases the tables have a parent-child

relationship. ROUND ROBIN partitioning may be useful, too, however, in such cases

where a table typically does not join with any other tables (or just replicated ones),

and there is no natural column to select as a partitioning column.

Another important partitioning_option is REPLICATED. This is appropriate for

“lookup” tables, such as a state code table. Replicated tables appear on all nodes,

with each node containing the exact same data. This also allows joins to occur on all

nodes without having to ship any data. Depending on your database schema and

queries, a DBA may even consider making other larger tables replicated, but caution

is urged.

A table may also simply appear on a single node or subset of the available nodes, via

the ON NODE clause, but it is recommended to use all nodes.

**Note that if no partitioning table options are specified, the table is

partitioned on the on the first element of the primary key across all nodes.

If none such key exists, the first column in the table is chosen as the

partitioning key automatically.

Examples:

CREATE TABLE part (p_partkey INTEGER NOT NULL,

 p_name VARCHAR(55) NOT NULL,

 p_mfgr CHAR(25) NOT NULL,

 p_brand CHAR(10) NOT NULL,

 p_type VARCHAR(25) NOT NULL,

 p_size INTEGER NOT NULL,

 p_container CHAR(10) NOT NULL,

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 25

 p_retailprice DECIMAL(15,2) NOT NULL,

 p_comment VARCHAR(23) NOT NULL)

PARTITIONING KEY p_partkey ON ALL;

CREATE TABLE nation (n_nationkey INTEGER NOT NULL,

 n_name CHAR(25) NOT NULl,

 n_regionkey INTEGER NOT NULL,

 n_comment VARCHAR(152))

REPLICATED;

Constraint Exclusion Partitioning

EnterpriseDB has the ability to partition within a database instance via check

constraints. This allows the DBA to create segments for a table that contain ranges

of values, for example. A table named orders could be partitioned into monthly

subtables, allowing queries that include a condition based on order date to scan with

a smaller set of data, and therefore have a faster query time.

This is a powerful feature that should be taken advantage of. Constraint exclusion

partitioning coupled with GridSQL’s partitioning across multiple nodes will result in

significantly faster query response times; a large table can be broken into multiple

subtables, each of which is partitioned across multiple nodes in the cluster.

Note that the postgresql.conf parameter constraint_exclusion is off by default

and must be set to on in order to take advantage of this feature.

An example appears below.

CREATE TABLE orders (

 o_orderkey INTEGER NOT NULL,

 o_custkey INTEGER NOT NULL,

 o_orderstatus CHAR(1) NOT NULL,

 o_totalprice DECIMAL(15,2) NOT NULL,

 o_orderdate DATE NOT NULL,

 o_orderpriority CHAR(15) NOT NULL,

 o_clerk CHAR(15) NOT NULL,

 o_shippriority INTEGER NOT NULL,

 o_comment VARCHAR(79) NOT NULL)

PARTITIONING KEY o_orderkey ON ALL;

CREATE TABLE orders_199201

(CHECK (o_orderdate BETWEEN '19920101'::DATE AND '19920131'::DATE))

INHERITS (orders);

CREATE TABLE orders_199202

(CHECK (o_orderdate BETWEEN '19920201'::DATE AND '19920228'::DATE))

INHERITS (orders);

:

 A query like “SELECT o_orderdate, count(*) from orders where o_orderdate

between ‘1992-01-01’ and ‘1992-01-15’ GROUP BY o_orderdate” will only use tuples

found from the orders_199201 subtable (and the orders table, which should be left

empty).

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 26

Note that when loading data, you must insert data into the proper subtable.

Using the above example, in the current implementation, loading into orders

directly will not automatically just insert the data into the correct subtable.

Another important consideration when creating subtables is to be aware that the

current implementation is a bit datatype sensitive, and you might find that the

underlying EnterpriseDB executor is not taking full advantage of eliminating

subtables.

In the case of dates, we recommend using the above syntax to cast the date type, as

in

CHECK (o_orderdate BETWEEN ‘19920101’::DATE AND ‘19920131’::DATE)

Leaving it as either just a date, or as a quoted string may cause queries in Postgres

Plus Advanced Server (or PostgreSQL) to not be executed optimally. This depends on

how the CHECK constraints are formulated and how the WHERE conditions are

formulated. The above check constraint syntax appears to handle various date

constructs (quoted, cast) in SELECT WHERE clauses properly.

Temporary Tables

Temporary tables (or temp tables) may be created using the CREATE TEMP TABLE

command. A temporary table is accessible only for the session that created it. After

the session ends, the temp table will be dropped automatically.

When a temporary table is created in GridSQL, one or more temp tables will also be

created on the underlying database. The gridsql.config configuration related

properties appear below.

gridsql.config parameter Default Description

xdb.tempTablePrefix TMP Temporary table prefix to use in underlying

database. Various databases have different

conventions, like “TEMP.” or “#”.

xdb.sqlcommand.createTempTable

.start

CREATE

TABLE

Start of command for CREATE TABLE statement for

creating temp table on the underlying database.

xdb.sqlcommand.createTempTable

.suffix

WITHOUT

OIDS

Suffix to add at the end of CREATE statements

for temp tables.

Note that GridSQL currently uses non-temporary tables in the temporary table

implementation by default.

Column Definitions

Columns may be of any of the data types listed in the data type chapter. In addition,

the user may specify whether or not nulls are allowed with NULL or NOT NULL, and

include a DEFAULT clause to specify any default value for the column if none is

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 27

specified as part of an insert. A column may also be designated as a primary key, or

reference a foreign key.

Constraint Definitions

The CREATE TABLE statement may also include primary key or foreign key constraint

definitions. Alternatively, these can also be specified as separate statements as part

of ALTER TABLE. Please see ALTER TABLE for a more detailed discussion about

constraints.

Xrowid

In previous versions of GridSQL, an internal row identifier was always created for

each row to aid with distributed constraint checking. This is no longer required if you

have a primary key or unique index on a table. If you do not use distributed

constraints (e.g., a tuple in one table references a tuple in another), you do not need

to worry about a unique key for each row. For compatibility, one can still create

XROWID by including the WITH XROWID clause. The implicit default is WITHOUT

XROWID.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 28

5.1.3 DROP TABLE

Syntax:

DROP TABLE table_name

The DROP TABLE command is used to drop a table from the database.

If any foreign key constraints exist and other tables reference this one, the DROP will

not succeed. The foreign key constraint from the other table must be dropped first.

5.1.4 TRUNCATE TABLE

Syntax:

TRUNCATE table_name

The TRUNCATE command effectively deletes all the rows in a table. It is much faster

than DELETE without any WHERE condition since it will not scan the entire table.

5.1.5 ALTER TABLE … ADD COLUMN

Syntax:

ALTER TABLE table_name

 ADD [COLUMN] create_definition

This command is used to add columns to an existing table.

5.1.6 ALTER TABLE … DROP COLUMN

Syntax:

ALTER TABLE table_name

 DROP COLUMN column_name

This command is used to drop a column from a table in the database.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 29

5.1.7 ALTER TABLE … ADD PRIMARY KEY

Syntax:

ALTER TABLE table_name

 ADD PRIMARY KEY (column_name [,column_name...])

A primary key may be added either as part of the CREATE TABLE statement, or as

part of ALTER TABLE.

EnterpriseDB GridSQL will try and have constraints be enforced locally on the nodes

if possible. That means, if the first column in the primary key is also the partitioning

column for a table, GridSQL will not enforce the primary key itself, and will allow the

underlying database to do it, since we know that no two rows with the same key can

appear on different nodes. In addition, if the table is a lookup table and replicated to

all nodes, or it just appears on a single node, GridSQL will also leave it to the

underlying database to be enforced.

If, however, the table is partitioned, and the first column in the primary key is not

the partitioning column, GridSQL will enforce the primary key in case of INSERTs or

UPDATEs. Distributed constraints like this are expensive to enforce, so if

your database does a considerable amount of such write operations, you

may not want to create any distributed constraints. If just doing periodic loads,

it should not be an issue.

If a unique index already exists on the primary key columns, it will be used.

Otherwise, the command is issued on the underlying nodes.

5.1.8 ALTER TABLE … ADD FOREIGN KEY

Syntax:

ALTER TABLE table_name

 ADD [CONSTRAINT constraint_name]

 FOREIGN KEY (column_name [, column_name...])
 REFERENCES table_name (column_name [, column_name…])

Foreign key constraints may be added by either the CREATE TABLE or ALTER TABLE

command.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 30

Foreign keys help to guarantee referential integrity in your database. The referring

table’s corresponding values must exist as a primary key or unique index in the

referenced table.

EnterpriseDB GridSQL will try and have constraints be enforced locally on the nodes

if possible. If we are referencing a replicated lookup table for example, GridSQL will

leave it to the underlying nodes to enforce, and will create a foreign key constraint

on each node locally.

In addition, if the table is partitioned and we are referencing another partitioned

table, if the first column in the referenced and referring key in each of the tables is

also the partitioning key for each, we will also rely on the underlying databases to

enforce the constraint.

In other cases, local enforcement is not possible. In those cases, GridSQL will

provide enforcement of foreign keys for INSERT, UPDATE and DELETE operations, as

a distributed constraint.

Distributed constraints like this are expensive to enforce, so if your database does a

considerable amount of such write operations, you may not want to create any

distributed constraints. If just doing periodic loads, it should not be an issue.

5.1.9 ALTER TABLE … DROP CONSTRAINT

Syntax:

ALTER TABLE table_name

 DROP CONSTRAINT constraint_name

This command is used to drop an existing primary key or foreign key constraint. If

the constraint had been created after an index on which it was based, only the

constraint definition is dropped, and not the previously created index. If an internal

index needed to be created for the constraint, it will be dropped as well, however.

If no constraint name was specified at the time of its creation, the internally

generated name may be determined by issuing a SHOW CONSTRAINTS command.

5.1.10 ALTER TABLE … DROP PRIMARY KEY

Syntax:

ALTER TABLE table_name

 DROP PRIMARY KEY

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 31

The DROP PRIMARY KEY clause of the ALTER TABLE command is used to remove the

primary key for a table. If the primary key constraint was created after a unique

index on which it was based, the index will not be dropped. If an internally

generated index was created, it will be dropped along with the primary key.

5.1.11 ALTER TABLE … ALTER COLUMN

Syntax:

ALTER [COLUMN] column TYPE type [USING expression]

ALTER [COLUMN] column SET DEFAULT expression

ALTER [COLUMN] column DROP DEFAULT

ALTER [COLUMN] column { SET | DROP } NOT NULL

This command is used to modify the definition of a column, changing its type, its

default, and whether or not in can be null. These can also be combined into a single

ALTER command.

5.1.12 ALTER TABLE … OWNER

Syntax:

ALTER TABLE table OWNER TO new_owner

This variant of ALTER TABLE is used modify the owner of the table.

5.1.13 ALTER TABLE … SET TABLESPACE

Syntax:

ALTER TABLE table_name SET TABLESPACE tablespace

This variant of ALTER TABLE is used to move a table from one tablespace to another.

More information about tablespaces can be found in the topic of CREATE

TABLESPACE.

5.1.14 RENAME TABLE

Syntax:

RENAME TABLE table_name TO new_table_name

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 32

This command allows the DBA or owner of a table to rename a table.

5.1.15 CREATE INDEX

Syntax:

CREATE [UNIQUE] INDEX index_name

 ON table_name [USING index_type]

 (column_name [[ASC|DESC|operator_class],...)

 [TABLESPACE tablespace]

 [WHERE predicate]

This command is used to create indexes for tables on the specified columns. The

optional TABLESPACE clause allows a tablespace to be specified.

If the UNIQUE modifier is specified, the set of values in the columns must be unique.

If the table is partitioned and the first column in the index is the partitioning column,

GridSQL will rely on the underlying nodes to enforce the unique index. If that is not

the case, GridSQL will enforce the unique index itself. Note that enforcing a

unique distributed index will significantly slow down INSERT and UPDATE

operations.

The USING clause allows for other types of indexes to be used, if the underlying

database supports it.

The WHERE predicate allows for the support of partial indexes.

5.1.16 DROP INDEX

Syntax:

DROP INDEX index_name [ON table_name]

This command is used to drop indexes on tables. It can be executed by the DBA or

owner of the table.

5.1.17 CLUSTER

Syntax:

CLUSTER index_name ON table_name

CLUSTER table_name

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 33

CLUSTER

Clustering a table on an existing index causes the table to be reordered based on the

specified index, to allow for faster access.

Note that when new rows are added to the table they will not be in clustered order.

Issuing a CLUSTER command with just the table_name parameter will recluster the

table on the specified index. Issuing a CLUSTER command without any parameters

will recluster all clustered tables.

As a practical matter, if your tables get quite large, this command may execute for a

long time. Using CLUSTER may just be practical if you have a loading strategy where

you create subtables (see CREATE TABLE) based on a window of time of data, and

where this data is fairly static. Then, you can CLUSTER the particular subtable just

once and leave it alone after that.

5.1.18 CREATE VIEW

Syntax:

CREATE VIEW view_name [(column1[,column…])] AS select_statement

This statement allows views to be defined from one or more tables as SELECT

statements.

GridSQL views are not updatable; one cannot update data in a view, or insert data

into a view.

Views are not materialized, and are evaluated as part of a query at execution time.

5.1.19 DROP VIEW

Syntax:

DROP VIEW view_name

This statement is used to drop a view.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 34

5.2 Data Manipulation Statements

5.2.1 INSERT

Syntax:

INSERT [INTO] table_name [(column_name,...)]

 VALUES ((expression),...)

INSERT [INTO] table_name [(column_name,...)]

 SELECT ...

The INSERT command is used to insert data into the table. There are two forms of

the command, one for single row inserts, and one for multiple row inserts by taking

the results of a SELECT statement.

If the table is replicated, inserted rows will be inserted into the replicated table on all

nodes.

If the table is on a single node, the rows will just be inserted into the table on that

node.

If the table is partitioned, a hash value is calculated based on the partitioning column

of the table, and the row to be inserted will be inserted at the appropriate target

node.

For the INSERT to succeed, no unique index, primary key or referenced foreign key

constraint violations may occur.

5.2.2 UPDATE

Syntax:

UPDATE table_name

 SET [table_name.]column_name1=expression1

 [, [table_name.]column_name2=expression2 ...]

 [WHERE where_definition]

The UPDATE command is used to update data within a table.

If a table is replicated, the table will be updated the same on all of the nodes.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 35

If the table is on a single node, the rows will just be update in the table on that

node.

For the UPDATE to succeed, no unique index, primary key or referenced foreign key

constraint violations may occur.

If any distributed foreign key or primary key constraints exist, the execution of

UPDATE may slow down considerably while these are checked cross-node. If the

UPDATE affects the partitioning column of the table, the updated row may physically

move from one node to another on the underlying database.

5.2.3 DELETE

Syntax:

DELETE FROM table_name

 [WHERE where_definition]

The DELETE command is used to delete data within a table.

If a table is replicated, the rows from the table will be deleted in the same manner

on all of the nodes.

If the table is on a single node, the rows will just be deleted in the table on that

node.

For the DELETE to succeed, no foreign key constraint references to this table may be

violated.

If any distributed foreign key references exist, the execution of DELETE may slow

down considerably while these are checked cross-node.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 36

5.2.4 SELECT

Syntax:

SELECT

 [DISTINCT | UNIQUE | ALL]

 select_expression,...

 [FROM table_references

 [WHERE condition]

 [GROUP BY {unsigned_integer | column_name | expression}...]

 [HAVING where_definition]

[UNION select…...]

 [ORDER BY {unsigned_integer | column_name | expression} [ASC |

DESC] ,...]

 [LIMIT n] [OFFSET m]

table_references may be

:

table_reference, table_reference

table_reference [CROSS] JOIN table_reference

table_reference [INNER] JOIN table_reference join_condition

table_reference NATURAL JOIN table_reference ON (column[,column_name...])

table_reference LEFT [OUTER] JOIN table_reference join_condition

Where table_reference is defined as:

table_name [[AS] alias]

and join_condition is defined as:

ON conditional_expr | USING (column_list)

When using USING, column_list must be column names that exist in both

tables.

WHERE condition_expr:

[NOT] condition_expr [{AND | OR} condition_expr]

condition_expr:

expression operator [ANY|ALL] expression

expression [NOT] BETWEEN expression AND expression

expression [NOT] {IN|EXISTS} ({select_statement|expression_list})

[{table|alias].]column IS [NOT] NULL

[{table|alias].]column [NOT] {LIKE] } string

An expression itself can be a string literal, mathematical expression, the result of a

SELECT, etc. More information on expressions and operators can be found in the

Expressions chapter earlier in this document.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 37

5.3 Importing and Exporting via COPY

Syntax:

COPY tablename [(column [, ...])]

 FROM { 'filename' | STDIN }

 [[WITH]

 [DELIMITER [AS] 'delimiter']

 [NULL [AS] 'null string']

COPY { tablename [(column [, ...])] | (query) }

 TO { 'filename' | STDOUT }

 [[WITH]

 [DELIMITER [AS] 'delimiter']

 [NULL [AS] 'null string']

GridSQL’s COPY command is similar to PostgreSQL’s command.

The first form, COPY FROM, is used for importing data into a table from a file or

STDIN. The second form, COPY TO, is used for exporting data from a table out to a

file or STDOUT.

Note that you can also use the gs-loader utility for better error handling, which is

described in the Import and Export Utilities guide.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 38

5.4 Users and Privileges

This section contains the SQL commands for creating and manipulating users and

granting and revoking privileges.

A valid user must be specified when connecting to the GridSQL database. When a

database is first created with createdb, the user is required to assign a DBA

username and password.

A user must be granted access to a table before being able to access it. By default, a

user who creates a table has all privileges on that table.

There are 3 classes of users: DBA, RESOURCE, and STANDARD. DBA users have

Database Administration privileges. RESOURCE users can create tables. STANDARD

users cannot create tables, but can access the database.

5.4.1 CREATE USER

Syntax:

CREATE USER username PASSWORD password [user_class]

 user_class = [DBA|RESOURCE|STANDARD]

By default, user_class is RESOURCE.

This command may only be executed by a DBA user.

STANDARD users may only access tables for which they have been granted

permission (or via PUBLIC, of course). They may also create temp tables.

RESOURCE users are the same as STANDARD, only they also have the ability to

create tables.

DBA users have all of the permissions of a RESOURCE user, but can additionally

perform other tasks: starting and stopping a database, and executing ANALYZE,

CREATE USER, DROP USER, and ALTER USER.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 39

5.4.2 ALTER USER

Syntax:

ALTER USER username PASSWORD password

ALTER USER username user_class

ALTER USER username PASSWORD password user_class

This command may only be executed by a DBA user, or by the same user wanting to

change his or her own password.

A user cannot be demoted to the user class STANDARD if they own one or more

tables. In such a case, this will fail. The DBA should instead first either drop the

tables or reassign ownership via ALTER TABLE using the OWNER clause.

5.4.3 DROP USER

Syntax:

DROP USER username

This command may only be executed by a DBA user, and removes the user from the

database.

5.4.4 GRANT

Syntax:

GRANT privilege_list ON [TABLE] table_list TO grantee_list

privilege_list ::= ALL | privilege[,privilege…]

 privilege ::= SELECT | INSERT | UPDATE | DELETE |

 REFERENCES | INDEX | ALTER

table_list ::= * | table[,table…]

 grantee_list ::= grantee[,grantee]

grantee ::= PUBLIC | user_name

The GRANT command is used to grant privileges on a table, and may only be

executed by a DBA user, or the owner of a table.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 40

The privileges for SELECT, INSERT, UPDATE and DELETE are for those respective

commands.

The REFERENCES privilege refers to the ability to create foreign key constraints,

which requires REFERENCES privilege in both the referrer and referee tables.

The INDEX privilege allows the user to create and drop indexes.

The ALTER privilege allows the user to execute the ALTER table command.

5.4.5 REVOKE

Syntax:

REVOKE privilege_list ON [TABLE] table_list FROM grantee_list

privilege_list ::= ALL | privilege[,privilege…]

 privilege ::= SELECT | INSERT | UPDATE | DELETE |

 REFERENCES | INDEX | ALTER

table_list ::= * | *.* | table[,table…]

 grantee_list ::= grantee[,grantee]

 grantee ::= PUBLIC | user_name

REVOKE is used to revoke privileges on a table.

Note that we only revoke what has previously been granted. If a table has been

granted permission to PUBLIC, revoking for user1 will still allow user1 to access the

table because the table is still accessible to the PUBLIC.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 41

5.5 Other Commands

GridSQL also includes some administrative commands for administering the database

and finding out information.

Command Description

SHOW DATABASES Lists all of the user-created GridSQL

databases

SHOW TABLES Lists all of the tables that exist in the

current database

SHOW VIEWS Lists all of the views that exist in the

current database

DESCRIBE <table> Lists the columns and their definitions of

the specified table

DESCRIBE <view> Displays the view definition for the

specified view

SHOW INDEXES ON <table> Lists all indexes for <table>

SHOW CONSTRAINTS ON

<table>

Lists the following types of constraints for

<table>: primary keys, foreign keys, foreign

key references

SHOW USERS Lists all defined users and their class

SHOW STATEMENTS Lists all of the currently executing SQL

statements

KILL <request_id> Kills execution of the request id specified.

Request ids can be obtained by executing the

SHOW STATEMENTS command

ANALYZE Updates the internal statistics in the

database for creating better execution plans

VACUUM Potentially frees up space in the database

EXECUTE DIRECT Bypasses GridSQL and executes SQL commands

on the underlying database directly.

5.5.1 SHOW DATABASES

Lists all of the user-created GridSQL databases. Columns:

Column Description

Database Database name

Status The status of the database, can be either

Started or Down.

Nodes A comma separated list of all of the node id

numbers that the database is on.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 42

5.5.2 SHOW TABLES

Lists the columns and their definitions of the specified table.

Column Description

Table_name The name of the table

Table_partitioning_column If the table is partitioned, the column used

in partitioning, otherwise it is null for

single-node or replicated tables.

Table_nodes A comma separated list of all of the node id

numbers that the table is on.

5.5.3 SHOW VIEWS

Lists the views defined in the database.

Column Description

View_name The name of the view

5.5.4 SHOW TABLE <table>

Lists the columns and their definitions of the specified table.

Column Description

Column_name The name of the column

Sql_data_type Data type of column

Type_name The data type name

Is_nullable If YES, allows nulls, otherwise NO

Key If when the table was defined, this

single column was denoted as the

primary key

Default The default value of the column

5.5.5 SHOW VIEW <view>

Displays the view definition and any named view columns.

Column Description

View_text The text defining the view

View_column The comma separated list of the

column names defined by the creator

of the view, if any.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 43

5.5.6 SHOW INDEXES ON <table>

Lists all indexes for specified table.

Column Description

Indexname The name of the index

Isunique If YES, the index only allows

unique values.

Columns A comma-spearated list of the

columns that make up the index.

5.5.7 SHOW CONSTRAINTS ON <table>

Lists all constraints for specified table, including primary keys, foreign keys, foreign

key references.

Column Description

Constname Constraint name

Type The constraint type

Sourcetable If a foreign key constraint, the

referencing table

Sourcecolumns If a foreign key constraint, the

referencing columns

Desttable If a foreign key constraint, the

referenced table.

Destcolumns If a foreign key constraint, the

referenced columns.

5.5.8 SHOW USERS

Lists all defined users.

Column Description

User_name User name

User_class Class of user

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 44

5.5.9 SHOW STATEMENTS

Shows all of the currently executing statements.

Column Description

Request_id The id of the request

Session_id The session id number

Submit_time The time at which the request was

submitted

Status P=processing, Q=queued

Statement The actual request submitted

Nodes For future use

Current_step For future use

5.5.10 KILL

Syntax:

KILL statement_number

Kill is used to abort a currently executing or queued request. Kill is followed by the

request id number, which can be determined from the SHOW STATEMENTS

command.

5.5.11 ANALYZE

Syntax:

ANALYZE [table [(column [, ...])]]

The ANALYZE command is a synonym for UPDATE STATISTICS. Both commands are

supported to make administration easier for DBAs accustomed to one or the other

command from other DBMS systems.

ANALYZE updates internal statistics within node databases level as well as within

GridSQL’s metadata database, to allow better query plans to be created when

processing queries.

ANALYZE by itself will analyze all tables. If a table name is included, it will analyze

just the particular table. For finer granularity, individual column names may be

specified as well.

See also: VACUUM.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 45

5.5.12 VACUUM

Syntax:

VACUUM [FULL | FREEZE] [ANALYZE] [table [(column [, ...])]]

The VACUUM command is used to clean up the database internally, freeing up space

due to deleted and updated rows. It is also a good idea to run it periodically due to

transaction id wrap-around (more information can be found in the Postgres Plus

Advanced Server or PostgreSQL documentation).

It is a good idea to run the variant VACUUM ANALYZE, achieving both the results of

VACUUM and ANALYZE at the same time.

VACUUM can optionally accept a single table name, as well as a subset of columns to

update.

The FULL parameter does a more thorough VACUUM, which may free up more space,

but it takes longer to run.

FREEZE is used to mark tuples so that they will not be subject to the transaction id

wrap-around issue. It is recommended to read more about FREEZE in the Postgres

Plus Advanced Server documentation before using.

See also: ANALYZE

5.5.13 EXECUTE DIRECT

Syntax:

EXEC[UTE] DIRECT ON [ALL | NODE[S] <node_list>]

'<native_command>'

The EXECUTE DIRECT command can be used to bypass GridSQL’s processing and

execute a SQL statement directly on the specified nodes. This can be useful for

maintenance and troubleshooting. Instead of using GridSQL’s syntax, the user uses

the native syntax of the underlying database.

Please exercise caution when using EXECUTE DIRECT. If you perform DDL

commands like CREATE TABLE, GridSQL’s metadata database will not be

updated and it will have no knowledge of the table.

EnterpriseDB GridSQL SQL Reference

 Copyright © 2007

 Page 46

If the command is a query, one ResultSet is returned from each of the nodes. The

results are displayed in the order in which the node numbers were listed. If ALL was

specified, the results are returned in their natural order.

If using the cmdline utility, the results from each node will be displayed one after

another.

Example:

 EXECUTE DIRECT ON ALL ‘select count(*) from customer’;

